# load packages
library(tidyverse)
library(tidymodels)
library(knitr)
library(kableExtra)
library(patchwork)
# set default theme in ggplot2
::theme_set(ggplot2::theme_bw()) ggplot2
Inference for regression
Cont’d
Announcements
Research topics due TODAY at 11:59pm on GitHub
HW 02 due Thursday at 11:59pm
Statistics experience due Tuesday, April 22
Exam 01
50 points total
- in-class: 35-40 points
- take-home: 10 - 15 points
In-class (35 -40 pts): 75 minutes during February 18 lecture
- Will be randomly assigned to exam room
Take-home (10 -15 pts): released after class on Tuesday
If you miss any part of the exam for an excused absence (with academic dean’s note or other official documentation), your Exam 02 score will be counted twice
Resources
Prepare readings (see course schedule)
Lecture notes (use search bar to find specific topics)
AEs
Assignments
Topics
- Conduct inference on a single coefficient
Computing setup
Data: NCAA Football expenditures
Today’s data come from Equity in Athletics Data Analysis and includes information about sports expenditures and revenues for colleges and universities in the United States. This data set was featured in a March 2022 Tidy Tuesday.
We will focus on the 2019 - 2020 season expenditures on football for institutions in the NCAA - Division 1 FBS. The variables are :
total_exp_m
: Total expenditures on football in the 2019 - 2020 academic year (in millions USD)enrollment_th
: Total student enrollment in the 2019 - 2020 academic year (in thousands)type
: institution type (Public or Private)
<- read_csv("data/ncaa-football-exp.csv") football
Regression model
<- lm(total_exp_m ~ enrollment_th + type, data = football)
exp_fit tidy(exp_fit) |>
kable(digits = 3)
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 19.332 | 2.984 | 6.478 | 0 |
enrollment_th | 0.780 | 0.110 | 7.074 | 0 |
typePublic | -13.226 | 3.153 | -4.195 | 0 |
Inference for a single coefficient
Inference for
We often want to conduct inference on individual model coefficients
Hypothesis test: Is there a linear relationship between the response and
?Confidence interval: What is a plausible range of values
can take?
Sampling distribution of
A sampling distribution is the probability distribution of a statistic for a large number of random samples of size
from a populationThe sampling distribution of
is the probability distribution of the estimated coefficients if we repeatedly took samples of size and fit the regression model
The estimated coefficients
Sampling distribution of
Let
, the element of
Hypothesis test for
Steps for a hypothesis test
- State the null and alternative hypotheses.
- Calculate a test statistic.
- Calculate the p-value.
- State the conclusion.
Let’s walk through the steps to test typePublic
.
Hypothesis test for : Hypotheses
Null: There is no linear relationship between institution type and football expenditure, after adjusting for enrollment
Alternative: There is a linear relationship between institution type and football expenditure, after adjusting for enrollment
Hypothesis test for : Test statistic
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 19.332 | 2.984 | 6.478 | 0 |
enrollment_th | 0.780 | 0.110 | 7.074 | 0 |
typePublic | -13.226 | 3.153 | -4.195 | 0 |
Test statistic: Number of standard errors the estimate is away from the null
. . .
This means the estimated slope of -13.226 is 4.195 standard errors below the hypothesized mean of 0.
Hypothesis test for : p-value
- The test statistic follows a
distribution with 124 degrees of freedom.
. . .
2 * pt(4.195, df = nrow(football) - 2 - 1, lower.tail = FALSE)
[1] 0.00005153923
. . .
Given
Hypothesis test for : Conclusion
The p-value is
, so we reject .The data provide sufficient evidence that
, meaning evidence there is a linear relationship between institution type and football expenditure, after adjusting for enrollment.
Confidence interval for
Confidence interval for
A plausible range of values for a population parameter is called a confidence interval
Using only a single point estimate is like fishing in a murky lake with a spear, and using a confidence interval is like fishing with a net
We can throw a spear where we saw a fish but we will probably miss, if we toss a net in that area, we have a good chance of catching the fish
Similarly, if we report a point estimate, we probably will not hit the exact population parameter, but if we report a range of plausible values we have a good shot at capturing the parameter
What “confidence” means
We will construct
confidence intervals.- The confidence level impacts the width of the interval
“Confident” means if we were to take repeated samples of the same size as our data, fit regression lines using the same predictors, and calculate
Cs for the coefficient of , then of those intervals will contain the true value of the coefficientBalance precision and accuracy when selecting a confidence level
Confidence interval for
. . .
where
Confidence interval: Critical value
# confidence level: 95%
qt(0.975, df = nrow(football) - 2 - 1)
[1] 1.97928
# confidence level: 90%
qt(0.95, df = nrow(football) - 2 - 1)
[1] 1.657235
# confidence level: 99%
qt(0.995, df = nrow(football) - 2 - 1)
[1] 2.61606
95% CI for : Calculation
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 19.332 | 2.984 | 6.478 | 0 |
enrollment_th | 0.780 | 0.110 | 7.074 | 0 |
typePublic | -13.226 | 3.153 | -4.195 | 0 |
95% CI for in R
tidy(exp_fit, conf.int = TRUE, conf.level = 0.95) |>
kable(digits = 3)
term | estimate | std.error | statistic | p.value | conf.low | conf.high |
---|---|---|---|---|---|---|
(Intercept) | 19.332 | 2.984 | 6.478 | 0 | 13.426 | 25.239 |
enrollment_th | 0.780 | 0.110 | 7.074 | 0 | 0.562 | 0.999 |
typePublic | -13.226 | 3.153 | -4.195 | 0 | -19.466 | -6.986 |
Interpretation: We are 95% confident that for each additional 1,000 students enrolled, the institution’s expenditures on football will be greater by $562,000 to $999,000, on average, holding institution type constant.
Application exercise
Recap
Conducted hypothesis tests for a single coefficient
Computed and interpreted confidence intervals for a single coefficient
Next class
- Exam 01 review